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 Real and Reactive power flow in an alternating current transmission line can 
be independently controlled by connecting, to the transmission line, a series-
compensating voltage, which is variable in magnitude and phase angle. The 
Static Synchronous Series Compensator (SSSC), a solid-state voltage source 
inverter (VSC) coupled with a transformer, is connected in series with a 
transmission line. An SSSC injects an almost sinusoidal voltage, of variable 
magnitude, in series with a transmission line. This injected voltage is almost 
in quadrature with the line current, thereby emulating an inductive or a 
capacitive reactance in series with the transmission line. This emulated 
variable reactance, inserted by the injected voltage source, influences the 
electric power flow in the transmission line. In this report, an attempt is made 
to evolve the model of SSSC and VSC with preliminary studies for the 
controller design. 
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1. INTRODUCTION 
 
1.1. Electrical Transmission Networks 

An electrical power transmission network comprises mostly three-phase alternating-current (ac) 
transmission lines operating at different transmission voltages. With increasing requirement of power-
transmission capacity and / or longer transmission distances, the transmission voltages continue to increase; 
indeed, increases in transmission voltages are linked closely to decreasing transmission losses.  
 
1.2. Conventional Control Methods 
  The following conventional control methods are used to control the power flow in transmission line 
network 

 Introducing the series capacitor in transmission line to control the line impedance. 
 Control of bus voltage by using Automatic generation control (AGC) / Transformer tap changer  
 Controlling the phase angle by using Phase-shifting transformers 

 
1.3. Flexible AC Transmission System  

Flexible AC Transmission System (FACTS) is a concept based on power-electronic controllers, 
which enhance the value of transmission networks by increasing the use of their capacity. As these 
controllers operate very fast, they enlarge the safe operating limits of a transmission system without risking 
stability [1], [2].  
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Today, it is expected that within the operating constraints of the current-carrying thermal limits of 
conductor, the voltage limits of electrical insulating devices, and the structural limits of the supporting 
infrastructure, an operator should be able to control power flows on lines to secure the highest safety margin 
as well as transmit electrical power at a minimum of operating cost.  

In general, FACTS devices possess the following technological attributes [3]: 
 Provide dynamic reactive power support and voltage control. 
 Reduce the need for construction of new transmission lines, capacitors, reactors, etc which, 

– Mitigate environmental and regulatory concerns. 
– Improve aesthetics by reducing the need for construction of new facilities such as 

transmission lines. 
 Improve system stability. 
 Control real and reactive power flow. 
The following FACTS controllers are used to control the power flow in transmission line network 
 Thyristor-Switched Series Capacitor (TSSC) 
 Thyristor-Controlled Series Capacitor (TCSC) 
 Thyristor-Controlled Phase Angle Regulator (PAR) 
 Static Synchronous Series Compensator (SSSC) 
The Static Synchronous Series Compensator is one of the most recent FACTS devices for power 

transmission line series compensation. The operation and control fundamentals of the SSSC can be found in 
[1], [4], [5].  
 
1.4. Static Synchronous Series Compensation (SSSC) 
 
 

 
 

Figure 1. Basic Building block of SSSC 
 

The basic building block of the SSSC as shown Figure 1 is a dc-ac converter which is connected in 
series with the transmission line by a coupling transformer. This injected voltage is almost in quadrature with 
the line current. A small part of the injected voltage which is in phase with the line voltage which is in 
quadrature with the line current emulates an inductive or a capacitive reactance in series with the 
transmission line. This emulated variable reactance, inserted by the injected voltage source, influences the 
electric power flow in the transmission line. 

An impedance compensation controller can compensate for the transmission line resistance if an 
SSSC is operated with an energy storage system. An impedance compensation controller, when used with an 
SSSC and no energy storage system, is essentially a reactance compensation controller.  
 
 
2. SEN TRANSFORMER AS FACTS CONTROLLER 

A review of operating principle of SEN Transformer is carried out as given below. 
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2.1. Direct Method of Voltage Regulation 
In order to regulate the voltage at any point in a transmission line, an in-phase or an out-of-phase 

voltage is connected in series with the line [6]. Figure 2(a) shows a voltage regulator scheme for regulating 
the voltage at any point in a transmission line. The exciter unit consists of a three-phase Y connected primary 
winding, which is impressed with the line voltage, Vs. The voltage-regulating unit consists of a total of six 
secondary windings (two windings in each phase for a bipolar voltage connection). The line is regulated at a 
voltage, Vs’, by adding a compensating voltage, Vs’s, either in- or out of phase with the line voltage, Vs. The 
corresponding phasor diagram is shown in Figure 2(b).  

 
 

 
 

Figure 2. (a) Voltage regulator circuit (b) phasor diagram 
 
 
The bipolar compensating voltage in any phase is induced, through autotransformer action, in two 

windings placed on the same phase of the transformer core.  
 

2.2. Phase Angle Regulation 
A Phase Angle Regulator (PAR) connects a voltage in series with the transmission line and in 

quadrature with the phase-to neutral voltage of the transmission line as shown in Figure 3(a). The series-
connected compensating voltage introduces a phase shift, , [Figure 3(b)] whose magnitude (for small 
change) in radian varies with the magnitude of the compensating voltage in p.u where the phase-to-neutral 
voltage of the transmission line is the base voltage [6]. 

 
 

 
 

Figure 3. (a) Phase angle regulator circuit (b) phasor diagram 
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In a typical configuration, a PAR consists of two transformers as shown in Figure 3(a). The first 
transformer (exciter unit) is called a regulating transformer and is connected in shunt with the line. Its 
primary windings are excited from the line voltage (Vs) and a three-phase bipolar voltage is induced in the 
secondary windings. With the use of taps, a compensating voltage (Vs’s) with variable magnitude and in 
quadrature with the line voltage is generated from the phase-to-phase voltage of the induced voltage of the 
regulating transformer. For series connection of this voltage, an electrical isolation is necessary. The second 
transformer (series unit) is called a series transformer and is excited from the phase-to-phase voltage of the 
regulating transformer. The induced voltage of the series transformer is connected in series with the line. If 
the series transformer is a step-down transformer, the primary windings of the series transformer as well as 
the secondary windings of the regulating transformer are high voltage- and low current rated so that the taps 
on the secondary side of the regulating transformer can operate at a low current and can ride through a high 
fault current.  
 
2.3. Series Reactance Emulation 

In a special case, the sending-end voltage magnitude and its phase angle can also be varied together 
in such a way so that the effective line reactance is changed. The indirect way to implement a variable series 
capacitor or a variable inductor is to connect a variable magnitude compensating voltage in series with the 
line and in quadrature with the line current. Through control action, the magnitude of the compensating 
voltage can be varied and made lagging or leading the prevailing line current in order to emulate a variable 
capacitor or a variable inductor. Through the use of a Static Synchronous Series Compensator, a variable 
magnitude series-connected compensating voltage source is implemented [6]. 
 
2.4. An Ideal Series-Connected Power Flow Controller 

The effect of a series-connected variable magnitude and variable angle compensating voltage on the 
power flow in a transmission line is shown in Figure 4. A simple power transmission system with a sending-
end voltage, Vs, a receiving-end voltage, Vr, the voltage, VX, across line reactance, XL and the compensating 
voltage, Vs’s, is shown in Figure 4(a). For simplicity, it is considered that Vs = Vr = 1 pu, the angle between 
them to be  �= 30, and XL = 0.5 pu. When the transmission line is uncompensated, the real power flow in 
the line is 1 pu and the reactive power flow at the receiving-end is 0.268 pu capacitive 

 
 

 
 

Figure 4. Effect of a series-connected voltage source on power flow in a transmission Line. (a) Power 
transmission system with a series-connected compensating voltage, Vs’s, (b) phasor diagram, 

(c) variation of the receiving-end real and reactive power (Pr and Qr) and the exchanged compensating real 
and reactive power as a function of the angular rotation of the compensating voltage phasor, and 

(d) receiving-end Qr vs. Pr. 
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The voltage across the transmission line is the difference between the sending- and receiving-end 
voltages and it is 0.5176 pu. Figure 4(b) shows the phasor diagram related to a series-connected 
compensating voltage with a fixed magnitude of 0.2588 pu and its entire controllable range of 0 ≤ � ≤� 
360o. The compensating voltage, Vs’s, is added to the fixed sending end voltage, Vs, to produce the effective 
sending-end voltage, Vs’ = Vs + Vs’s. The difference, Vs’ – Vr, provides the compensated voltage, VX, 
across XL. As the angle, , is varied over its full 360 range, the end of phasor, Vs’s, moves along a circle 
with its center located at the end of phasor, Vs. The rotation of phasor, Vs’s, with angle, , modulates both 
the magnitude and the angle of phasor, VX. The real power, Pr, and the reactive power, Qr, at the receiving-
end vary with angle,, in a sinusoidal manner as shown in Figure 4(c). 

The compensating voltage, Vs’s, is at any angle with the prevailing line current, I, and, therefore, 
exchanges, with the line, both real power, Pexch (= VdI), and reactive power, Qexch (= VqI), where Vd and 
Vq are the respective real or direct and reactive or quadrature components of the compensating voltage with 
load convention. These exchanged real power, Pexch, and reactive power, Qexch, are also sinusoidal 
functions of angle, , as shown in Figure 4(c). For a given magnitude of a compensating voltage, the 
exchanged capacitive power, Qexch, is larger than its inductive counterpart due to the fact that the capacitive 
compensation produces a larger line current.  

The compensating voltage, being at any angle with the prevailing line current, emulates in series 
with the line a capacitor (C) or an inductor (L) and a positive resistor (+R) or a negative resistor (-R).  The 
real and reactive power flow in A compensating voltage can be in- or out-of-phase with the phase-to-neutral 
voltage of the transmission line to implement a voltage regulator.  

 A compensating voltage can be in quadrature with the phase-to-neutral voltage of the transmission 
line to implement a phase angle regulator. 

 A compensating voltage can be such that it provides series reactance compensation because of being 
in quadrature with the prevailing line current. If the circular controllable area is equally divided by 
the reactance compensator line (Vd = 0 or Pexch = 0), the upper and lower halves represent Pexch 
due to ‘-R’ and ‘+R’, respectively. 

 
2.5. Comparison between Sen Transformer and SSSC 

The Sen Transformer (ST), Figure 5, which is a single-core, three-phase transformer with a Y-
connected primary winding and nine secondary windings. The ST provides two functions  

 Voltage regulation 
 Impedance regulation for independent control of bidirectional active and reactive power flow. 

The family of Sen Transformers connects a series compensating voltage of variable magnitude at any angle 
with respect to the line voltage. The compensating voltage exchanges both real and reactive power with the 
line. Since the compensating voltage is derived from the line voltage through a transformer action with the 
primary windings, the exchanged real and reactive power with the line must flow through the primary 
windings to the line.  
 
 

 
 

Figure 5. Schematic diagram of “ST.” 
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In a Sen transformer, as shown in Figure 5, there are two units: exciter unit and compensating-
voltage unit. The exciter unit consists of three primary windings (A, B, and C) that are Y-connected and 
placed on each limb of a three-limb, single-core transformer. The three-phase transmission-line voltage (VsA, 
VsB, and VsC) at the sending end is applied in shunt to the exciter unit.  

 
 

3. STATIC SYNCHRONOUS SERIES COMPENSATION 
 
3.1. Theory 

The indirect way to implement a variable series capacitor or a variable inductor is to connect a 
variable magnitude compensating voltage in series with the line and in quadrature with the line current. If the 
SSSC voltage, VS, lags the line current, IL, by 90, a capacitive series compensation is obtained and if VS, 
leads IL by 90, an inductive series compensation is obtained. By controlling the magnitude VS and phase 
angle of the amount of series compensation can be adjusted. 
 
3.2. Mathematical Model 

Figure 1 shows a single line diagram of a simple transmission line with an inductive reactance, XL, 
connecting a sending-end voltage source, Vs, and a receiving-end voltage source, Vr, respectively [6], [7] 
[8]. 

The real and reactive power (P and Q) flow at the receiving-end voltage source are given by the 
expressions 

 
 
 

 
 
 
 
 

Where Vs and Vr are the magnitudes and s and s� are the phase angles of the voltage sources Vs 
and Vr, respectively. For simplicity, the voltage magnitudes are chosen such that Vs=Vr=V and the 
difference between the phase angles is �= s-r.  

An SSSC, limited by its voltage and current ratings, is capable of emulating a compensating 
reactance, Xq, (both inductive and capacitive) in series with the transmission line inductive reactance, XL. 
Therefore, the expressions for power flow given in equation (1) become 

 
 
 
 
 
 
 
 

Where Xeff is the effective reactance of the transmission line between its two ends, including the 
emulated variable reactance inserted by the injected voltage source of the SSSC. The compensating 
reactance, Xq, is defined to be negative when the SSSC is operated in an inductive mode and positive when 
the SSSC is operated in a capacitive mode. 

Figure shows an example of a simple power transmission system with an SSSC operated both in 
inductive and in capacitive modes and the related phasor diagrams. The line current decreases from I0% to I-
100%, when the inductive reactance compensation, - Xq/XL, increases from 0% to 100%. The line current 
increases from I0% to I33%, when the capacitive reactance compensation, Xq/XL, increases from 0% to 33%. 
From equations (1) and (2), the expressions for the normalized power flow in the transmission line and the 
normalized effective reactance of the transmission line can be written as  
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The effects of the compensating reactance, Xq, on the normalized power flow in the transmission 
line and the normalized effective reactance of the transmission line are shown. When the emulated reactance 
is inductive, the power flow, Pq and Qq, decrease and the effective reactance, Xeff, increases as the reactance 
compensation, -Xq/XL, increases. When the emulated reactance is capacitive, the power flow, Pq and Qq, 
increase and the effective reactance, Xeff, decreases as the reactance compensation, Xq/XL, increases.  
 
 
4.  METHODOLOGY 

 

4.1. Voltage Source Converter (VSC)  
 
 

 
Figure 6. Basic principles of VSC  

 
 

Voltage fed converter means [1], [9], it receives the dc voltage at one side and convert it to ac 
voltage on the other side. The ac voltage frequency maybe variable or constant depends on the applications.  
The voltage – fed inverter should have a stiff voltage source at the input, that is, its Thevenin impedance 
should ideally zero. If the input voltage is not stiff a large DC capacitor can connect at the input side 
irrespective of DC voltage variations. In this simulation studies also large value of capacitor (splits into two) 
is connected in front of the converter. 

Figure 6 shows the block diagram representation of VSC. The basic concept of voltage source 
converter and current source converter has been studied [1] in details.  
 
4.2. Principle of operation of VSC 
 
 

 
  

Figure 7. Single valve operation 
 
 
Figure 7 shows the principle of operation of an IGBT based single valve connection diagram. Gating 

instant is not shown in Figure 3.2, for simplicity of explanation. 
The capacitor voltage Vd is assumed to be a constant, supported by a large capacitor. With the 

positive terminal of the capacitor is connected to the collector of the IGBT. When IGBT is turned ON, the 
positive dc terminal is connected to an ac terminal at   ‘A’ and the ac voltage would jump to Vd. If the current 
happens to flow from +Vd to ‘A’ (through IGBT), the power would flow from the dc side to ac side (inverter 
action). However, if the current happens to flow from ‘A’ to +Vd it will flow through the diode even the 
IGBT is ON, and power will flow from ac side to dc side (rectifier action). Thus the valve with combinations 
of diode can handle the power flow in direction, this valve and its capability to act as a rectifier or as an 
inverter with instantaneous current flow in positive or negative direction respectively, is basic to voltage 
source converter concepts.  
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4.3. Basic Control of SSSC  
The basic building block of the SSSC as shown in figure 8 is a dc-ac converter which is connected 

in series with the transmission line by a coupling transformer. If the SSSC voltage, VS, lags the line current, 
IL, by 90º, capacitive series compensation is obtained and if VS leads by IL 90º, inductive series compensation 
is obtained. By controlling the magnitude of the amount of series compensation can be adjusted [10], [11].  
The only way to control the magnitude of the converter ac voltage is by the input dc voltage. The dc 
capacitor voltage control is achieved by a small phase displacement, , real power flows from the SSSC to 
the transmission line and the dc capacitor is discharged. Similarly, real power flows from the transmission 
line to the SSSC and the dc capacitor is charged. Besides, a small amount of real power from the 
transmission line is required to compensate the converter switching and coupling transformer losses. 
 
 

 
 

Figure 8. Basic Control block of SSSC 
 
 
4.4. Proposed Power Flow Control using SSSC  

The main function of the SSSC is to control the real power flow. This can be achieved either by 
direct control of the line current or power, or alternatively by indirect control of the compensating reactance, 
Xs, or series voltage, Vs. Because of practical considerations, sometimes the reactance control may be 
preferred. [12] [13].  

The degree of series compensation, S, is usually expressed as the ratio of the series injected 
reactance, XS, to the transmission line reactance, XL. Therefore, S = (XS/XL) and the reference reactance is 
SXL which is negative for capacitive and positive for inductive compensation. Figure shows the basic control 
structure of the SSSC, with the series injected reactance, XS, as the reference value as shown in figure 9.  

The Phase-Locked Loop (PLL) system provides the basic synchronization signal,, which is the 
phase angle of the line current. XRef is compared with XS and the error is passed to a PI controller that 
generates the required phase angle displacement, . The final output of the control system is the phase 
angle of the SSSC voltage. 
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Figure 9. Basic Control Block for SSSC 

 
 

XReff is the effective reactance of the transmission line between its two ends, including the emulated 
variable reactance inserted by the injected voltage source of the SSSC. The compensating reactance, XS, is 
defined to be negative when the SSSC is operated in an inductive mode and positive when the SSSC is 
operated in a capacitive mode. 
 
 
5.  CONCLUSION 

In this paper, an attempt is made to review the model of SSSC and VSC with preliminary studies for 
the controller design. The power flow in the transmission line always decreases when the injected voltage by 
the SSSC emulates an inductive reactance in series with the transmission line and the power flow in the 
transmission line always increases when the injected voltage by the SSSC emulates a capacitive reactance in 
series with the transmission line. An attempt has been made to evolve a better control strategy to control the 
power flow in the transmission line using voltage source converter. The power flow control using sen 
transformer discussed in [5], is considered as reference for evolving control strategy for SSSC.  
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